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Dispersion due to molecular diffusion and macroscopic 
mixing in flow through a network of capillaries 

By P. G. SAFFMAN 
Cavendish Laboratory, Cambridge 

(Received 27 dday 1969) 

This paper is concernec with the dispersion of a material quantity in t.-e steady 
flow of a viscous fluid through a random network of capillaries (which is a useful 
model of a porous medium), for the cam in which molecular diffusion and macro- 
scopic mixing, due to the randomness of the streamlines, are both important. 
A Lagrangian correlation function is introduced and the longitudinal and lateral 
effective diffusivities are thereby calculated for all values of UI/K less than some 
large value. Here, I denotes the length of a capillary, U the mean velocity of the 
fluid, and K the molecular diffusivity of the material quantity. The theory is 
compared with experimental observations of dispersion in flow through granular 
beds. 

1. Introduction 
In a recent paper (hereafter referred to aa I), Saffman (1959) has investigated 

the dispersion of a dynamically neutral material quantity in a viscous fluid 
flowing through a porous medium, on the basis that the porous medium may be 
regarded as equivalent to a statistically isotropic network of straight capillaries. 
The discussion was restricted to the case in which the dispersion is primarily due 
to macroscopic mixing. This arises from the randomness of the streamlines 
through the network, and hrcs an effective Musivity of order UZ, where Z is the 
length scale of the capillaries and U is the mean velocity of the fluid (the inter- 
stitial velocity). The results of I are then only valid when 

K 4 u1, (1.1) 

where K is the molecular difisivity of the material quantity. 
The method of I utilized the fact that the path of a fluid particle through 

a random network of capillaries can be treated as a random walk of randomly 
orientated steps, the velocity in a step depending upon its direction. This approach 
is clearly valid only if (1.1) is satisfied. An alternative appjoach, involving the 
idea of Lagrangian correlation functions which are well known in the theory of 
turbulent diffusion (see § 3 below), was suggested to the author by Dr T. H. Ellison 
in a private communication. As it happens, this method seems to be in general 
(although not always?) less useful than the random walk approach for the cases 

t For example, it gives the dispersion in certain cases for small values of the time from 
the initial instant, whereas the random walk approach is an asymptotic theory for large 
values of this time. 
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considered in I. However, it affords a means of calculating the dispersion when 
(1.1) is not satisfied, i.e. when the effect of molecular diffusion is comparable with 
or greater than the macroscopic mixing, and this is the purpose of the present 
paper. The theory is not without practical importance since a network of capil- 
laries is not an altogether unreasonable model of a porous medium and actual 
flows in which U ~ / K  < O(1) are not uncommon, e.g. the flow of gases through 
porous media. 

2. The flow in the network 
The work is restricted to the case in which the mean (macroscopic) velocity in 

the network is uniform and unidirectional, and the Reynolds number of the flow 
in the capillaries is sufficiently small for viscous effects to be dominant (this is 
equivalent to supposing that the mean flow satisfies Darcy's law). We also 
suppose (primarily for simplicity, as in I) that the pores are circular of radius a 
and of equal length 1, where a < 1. Then to a reasonable approximation, the 
average velocity in a capillary making an angle 0 (0  < t9 < &m) with the direction 
of mean motion may be taken as 

q = 3 u ~ O s t 9 ,  (2.1) 

where U is the average velocity of the entire fluid (see I, equation (2.19), where 
p is denoted by 8) .  

Since this paper is primarily concerned with the dispersion when K is comparable 
with or greater than Ul, we shall suppose further that 

Ul 812 1 a2 
K<aa or -B- u 8K'  

Now a2/8K is the time scale for molecular Wusion to smooth out variations in 
concentration across the cross-section of a capillary, and the condition (2.2) 
expresses the condition that this is small compared with the time spent by a fluid 
particle in a capillary. The work of Taylor (1953; 1954) and Aria (1956) shows that 
in this case the concentration is approximately uniform over the cross-section and 
disperses, relative to axes moving with the velocity q, according to a diffiivity 

a2q2 
4 8 ~  

K+-=D,  say. 

Thus, when (2.2) is satisfied, the dispersion in the network is the same as if the 
velocity in each capillary were uniform throughout it, with the value q, and the 
material is subject to a diffusion process along the capillary with a diffusivity D 
(which depends upon the direction of the capillary). Note that 

by virtue of (2.2); so that D .I. K if UlIK is not large compared with unity, and for 

13-2 
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3. The Lagrangian correlation function 
If u(t)  is the velocity component in the 2-direction of a marked particle 

participating in a random process, the Lagrangian correlation function or 
covariance of the velocity u at time t and at a later time t‘ is u(t) u(t’), where the 
bar denotes an average taken in an appropriate way (which will depend upon the 
precise nature of the random process). As was first pointed out by Taylor (1921), 

dX/dt = u(t). Hence 
the displacement in the x-direction after time t is X ( t )  = 

1: ~ 

a -  ___ 

at 
-X2(t) = 2X(t)  u(t) = 2 u(t)  u(t‘) at’ 

For the case in which u(t)  is a stationary random function of the time 
(e.g. turbulent diffusion along a pipe; see Batchelor & Townsend 1956), 
u(t)  u(t’) = R(t - t’), where R(7) is the correlation function of the velocity u for 
a time interval 7 (and depends only on T and not on the time from any given 
instant), and the axes are chosen so that ii = x = 0. The overbar here denotes an 
ensemble or stochastic average. Then (3.1) becomes 

and hence 

dX2 - = 2 L R ( 7 ) d 7 ,  
at 

(3.3) 

Thus when t is large compared with the time scale for which the velocities at 
successive times are effectively correlated, 

assuming that the integrals converge. 

Thus, 

a n d h e n ~ e / ~ ~ R ( ~ ) d ~ m a y  beregardedas theeffectivediffusivity. It should perhaps 

be pointed out for the benefit of readers unfamiliar with this analysis that (3.4) 
does not prove that the dispersion of a cloud of marked particles is given (asymp- 
totically) by solutions of the diffusion equation with this effective diffusivity. To 
do this, it is necessary to prove that the probability distribution of X is normal, 
and that the displacement of different fluid particles in the same realization of the 
flow become statistically uncorrelated. However, there are usually no reasons for 
believing that these requirements are not satisfied, even though in most cases the 
formulation of rigorous proofs appears to present great difficulties: 

If now u(t) denotes the longitudinal component (i.e. in the direction of mean 
flow) of the velocity of a marked particle in steady flow through a random network 
of capillaries, we may proceed in an identical manner, provided the network is 
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Btatistically homogeneous. For convenience, we refer u and X to axes moving 
with the mean velocity, so that 

u = (q+qD)cos8-u = U(3cos28-1)+qDcos8, (3.5) 

where 8 = 8(t) refers to the capillary containing the particle at time t. qD is the 
random part of the velocity along the capillary due to the diffusion process with 
diffusivity D; it can be regarded as the velocity due to a Brownian motion 
equivalent to the diffusion process. That is, the velocity of a marked particle 
along a capillary fluctuates randomly because of the actual Brownian motion 
(caused by the collisions with other molecules) and because, as it moves to and fro 
across the capillary cross-section, the local mean velocity varies. These effects are 
mathematically equivalent to diffusion with diffusivity D and a corresponding 
fictitious Brownian velocity qD with the properties 

where ( ) denotes an average with respect to the Brownian motion. 
This argument is, of course, valid only if the time interval over which successive 

values of qD are correlated is small compared with the average time spent by 
a marked particle in a capillary. The former is at most a 2 / 8 ~  (and will be much less 
if molecular transport dominates the diffusion process), whereas the order of 
magnitude of the latter is the lesser of 1/ U and 1 2 / 2 ~ ,  and the argument is therefore 
valid by virtue of (2.2) and the condition a < 1. 

For the case of turbulent flow, the average denoted by the overbar is an ensemble 
average over all realizations of the flow. For the cme of steady flow in a random 
network, the average is over all configurations of the network, but this is equiva- 
lent, owing to the statistical homogeneity of the network, to an average over the 
initial position and velocity of the particle. Thus, iff denotes a property of 
a marked particle which at time t = 0 was in a pore making an angle 8 (0 < 8 < Qn) 
with the direction of mean motion and with azimuthal angle q5 (0  < q5 < 27~) about 
the same direction, was at a distance 1[(0 < f < 1) from the entrance of the 
capillary, and had a ‘Brownian velocity’ qD, where the values off, q5 andp = cos 8 
are uniformly distributed (since the proportion of pores in the range 8 to 8 + d8 is 
sin 8 do),  then 

(3.7) 
dq5 f = loh lo1 /02” IO1f sin d8 2n @ (qD), 

where&,) is the probability that the ‘Brownian velocity’ is less than qD. Note 
that 

(f> = [f dP (qLJ. 
0 

The value off is independent of the precise origin of the time. Moreover, 
= 0, and u(t) u(t’) is afunction because of the statistical homogeneity, u(t) = 

of (t’ - t )  only, equal to R(t’ - t ) ,  say. Thus the covariance is given by 

with the dispersion following from (3.3) and (3.4). 
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4. Calculation of the covariance 

have, writing p = cos 8, p' = 00s 8', 
Let primed quantities denote values after a time T from some initial instant. We 

au'= U2(3Pa- 1) (3/ht2- 1) +/6/%'qDq&+ u ( ~ D ( 3 ~ ' 2 -  1) +/4'qh(3p2- 1)). (4.1) 

The last term in (4.1) is zero Since (qD)  = 0 and ,!6 is independent of qD.  
Consider now the second term. The time interval over which qD and q& me 

effectively correlated is small compared with the average time for the particle to 
leave the initial capillary and enter another. In other words (q&) is non- 
negligible only for values of 7 so small that the value of p does not change (except 
for a negligible range of values of E for which a particle is next to a pore junction). 
Hence, to a reasonable approximation, 

J o  

on integrating with respect to 5 and 6. (This is permissible since (qD&) will 
depend, to the present approximation, only on 7 and the mechanics of the 
Musion process with diffusivity D.) 

It now follows from (3.6) that 

on substituting from (2.3) and (2.1). 
Thus the problem reduces to the calculation of the first term in (4.1), namely, 

(3p2- 1) ( 3 p -  1) = S(7), say. 

There are two distinct contributions to S(7). First, there is the integral over 
those initial conditions such that the marked particle has not reached either of the 
ends of the initial capillary after time 7, so that ,u = y' ;  this gives a contribution 
S1(r), say. Secondly, there is theintegral over the conditions for which the particle 
is in a different capillary after time T (or has returned to the initial capillary after 
having passed through one of the junctions at its ends), giving a contribution 
S&), say. Then 5(7) = &(T) + S2(7). 

4.1. The calculation of Sl(r) 

Let P(Eo, p, 7 )  denote the probability that a marked particle released at time 
T = 0 at a distance ZEI, from the entrance of the capillary has not reached one of the 
ends after time 7. Since p = p' for a particle which remains in the initial capillary, 

(P(t0,p,7)  is in fact the integral of dp(qD) over those modes of the 'Brownian 
motion' such that 5 += 0 or 1 in time 7.)  
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To calculate P, we note that the marked particles are convected along the 
aapillary with velocity q ( = 3Up) and diffuse relative to an origin moving at this 
speed with a diffusivity D. If they reach the ends of the capillary, they no longer 
contribute to &(T). Hence the probability that the particle lies between I6 and 
Z([+ d t )  after time 7 (not having passed through Lj' = 0 or 1) is cat, where c ( 6 , ~ )  is 
the solution of 

-+-- = -- 

subject to the initial condition c = ~ Y ( g - 6 ~ )  when 7 = 0 (a([) is the Dirac delta 
function) and the boundary conditions c = 0 when 6 = 0 and 1 for all 7. Then 

(4.4) 
ac qac ~ a 2 c  
a~ l a (  i 2 a p  

The solution of (4.4) is straightforward. It is easily verified that 
m 

C = x a, sin nnt eME exp { - (n%a + Ma) Dr/P}, 
1 

where (4.6) 

is a solution of the differential equation which satisfies the boundary conditions. 
It satisfies the initial conditions if 

m - 
CY(6 - to) = a, sin nnt eM6, 

1 

from which it follows by the uaual methods of Fourier series that 

Then (4.5) gives 
a, = 2 e-MEo sin nn&. 

2nn 
P(to,  p, 7 )  = nSn2 + Ms (1 - ( - 1)" e? e-wo sin nnto exp { - (&r2 + Ms) Dr/Z2}. 

(4.7) 
8 

On substituting in (4.3) and integrating with respect to to and q5, we obtain 

x (1 - (  - l)ncoshM}exp{-(n2n2+M2)~/Za), (4.8) 

This expresaion is fairly complicated. However, for the purpose of finding the 
where, in general, D and M are functions of p = cos 8. 

00 

effectivediffusivitywe onlyrequire the valueof [ &(7) d7. Integrating (4.8) term 
J o  

by term and summing the infhite series, we h d  

= s,'d,u&(3p2- (4.9) 
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expressing cosh Ax as a Fourier cosine series in x and putting x = 0 and 1~): 
We have here made use of the following formulae (which may be obtained by 

A-sinhh (-l)n 
2h2 sinh h = n w 2  ’ 

and the formulae which can be obtained by differentiating them with respect to A, 

4.2. The calculation of 8 2 ( 7 )  

The determination of S2(7) is rather more diacult. We shall assume, first, that 
the values of p for successive capillaries are statistically independent; that is, 
when a particle reaches a junction the choice of the next capillary is independent 
of the previous one. The larger K/UE the better will be this assumption, because 
molecular diffusion has a much smaller correlation time scale than the macro- 
scopic mixing. 

It might now be thought that 
___- 

S2(7) = [(3p2- 1) (3p’2- 1)],*,. = (3p2- 1) (3p’2- 1) = 0. 

However, this argument is false because it ignores the fact that although p’ is 
independent of p, it is not independent of the fact that the particle has passed 
through a junction during the time 7 and this, as will be seen below, affects the 

probability distribution of p’. Nevertheless, it is in fact true that s2(7) d7 = 0, 

so that S2(i) does not contribute to the effective diffusivity. 1 7S2(7)d7 $. 0, 

s,” W 

J O  
so there is a contribution to 5. The remainder of this section is devoted to the 
calculation of S2(7), or, to be more precise, its Laplace transform which is 
sufficient for our purposes. 

Let &(p, t )  dp denote the probability that a marked particle released at a junc- 
tion at t = 0 is in a capillary in the range p to p + dp after time t. 

The probability that a particle released at t = 0 at a distance 15 from the 
entrance to a capillary with a given value of p reaches a junction in the time 
interval from t to t + dt is a 

- (1 - -P(5,p, t )}& at 

where P(g ,p ,  t )  is given by (4.7). Hence the probability that this particle is in 
a capillary in the range p‘ top‘ + dp’ after time 7 from the initial instant of release 
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If all the pores leading from a junction had equal probability of being entered 
by a marked particle, then &(p, t) = 1 and X2(7) = 0. However, this is not the case 
since there is a tendency for particles to enter pores in which q is large rather than 
those in which it is small. (If K < U1, the probability of a particle leaving a junction 
by a pore in the range of width dp  is 2p dp,  and &(p, t) = 2p for t < ZU.) On the 
other hand, for large values oft the particle will (so to speak) forget where it was 
at t = 0 and the probability of the particle being in a capillary in a particular 
direction will become independent of the direction, i.e. &(p, t )  3 1 as t --f co. But 
since X2(7) depends upon the values of &(p, t )  for all values oft between 0 and T ,  

8&) will not in general vanish. 
It is useful now to take Laplace transforms with respect to the time. These will 

be denoted by an asterisk, i.e. the transform off(t) is f * ( p ) .  Then since (4.10) is 
a convolution, we have on integrating with respect to 5, 

where (4.13) 

00 

Now for the effective diffusivity, we really require only [ &(7) d7 and this is 
J O  

S,*(O). It now follows from (4.11) and (4.12) that S,*(O) = 0, provided 

(4.14) 

is finite. We know intuitively that &(p’, t) --f 1 as t --f co, and if we assume that 
&(p‘, t) - 1 is integrable from 0 to 03, it follows that &*(p’, p )  = p-l+ O( 1) asp --f 0, 
and hence that (4.14) is finite. However, this last msumption is far from obvious 
(&(p’, t) - 1 might be O( l/t)) and it therefore seems worth while presenting an 
explicit calculation of &*(p’, p).  

Let E(p’, t) dp’ denote the probability that a particle released at a junction is 
after time t in a capillary leading from this junction in the range p’ top’ + dp’, and 
in this time t has not returned to the junction or gone to the other end of the pore. 
The value of p’ in (and only in) E(p’, t) ranges from - 1 to + 1 (elsewhere 
0 < p’ < l ) ,  to take account of the fact that the particle may diffuse into a capillary 
against the direction of the stream. Then &(p’, t) is related to E(p’, t )  by 

the last term being the probability that it was at a junction sometime during the 
interval 0 to t and went on from there into a pore with p‘ in the appropriate range. 
Taking Laplace transforms of (4.15), we obtain 



(4.17) 

Now E(p ,  t )  may be determined in a manner similar to that for P(<, p, t ) ,  except 
that care is required because the particle starts at a junction. We overcome this 
difficulty by taking c = 1/AT, for < = 0 and 0 < t < AT, as the boundary condi- 
tion on the concentration c(<, t )  along the capillary, where c(<, t )  satisfies (4.4); and 
c = Oinitially,c = Oats = lforallt,andc = Oats = Ofort > AT.Then,wet& 

s 1 
E(p , t )  = lim / c(<,t)d<, and E*(p,p)  = lim c*(<,p)d<. 

AT+O 0 AT+O 0 

Taking the Laplace transform of (4.4), we find that c*([,p) satisfies 

(4.18) 

which has to be solved subject to the boundary conditions 

1 
c*(l,p)=O, c*(O,p)=-[l-e-pAT]+l as AT- tO.  

PAT 

The solution of (4.18) is perfectly straightforward (it is a linear equation with 
constant coefficients) and we find after a little algebra that 

M sinh (M2 + Zap/D)a + (Ma + Z2p/D)i (cosh (M2 + Zap/D)a - e y  
(Zap/D) sinh (Ma + Zf/D)* E*(PYP) = 

(4.19) 

(4.19), (4.17), (4.13) and (4.12) thus give an explicit expression for G ( p ) ,  and 
hence determine, in principle, &(7). We find from (4.19) and (4.17) that, asp  -t 0, 

(4.21) 

5. The longitudinal dispersion 
Collecting together the results of 94, we have from (4.2), (4.9) and (4.21), the 

result that the longitudind dispersion in a network of capillaries is asymptotically 
described by an effective diffusivity 

3 Ulp 3aaU2pa M = - -  and D=K+-. 
2 0  1 6 ~  

where 

The expression for K~ is valid provided we may replace the upper limit of inte- 
gration in the expression (3.3) for by t = 00. This is permissible when the 
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exponential term in (4.8) involving the time is small compared with unity and 
g(l/t) + @(O), which is the case if t $ P/K. 

when there ie no convection and no macroscopic mixing (i.e. U = 0), it follows 
from (5.1) that K~ = QK. Now experiments on dispersion in granular beds (e.g. 
Carberry & Bretton 1958) give values of K~ + QK, when convection is negligible. 
The discrepancy seems to be due quite simply to a granular bed not being 
a random network of capillaries. 

However, this is not to say that the present theory is not applicable to diaper- 
sion in granular beds; it is at least of qualitative value. Moreover, when there is 
flow through a granular bed, the streamlines will approximate to those through 
a random network of capillaries, and it is not too unreasonable to suppose that 
the macroscopic mixing due to the meanderings of the streamlines is given 
approximately by the terms in (5.1) involving U. In other words, we suggest 
that (for the purposes of comparison with experiments in granular beds) the 
above expression for K~ be replaced by 

(5.3) 
McothM- 1 

DJf2 ' p ,  
3 aW2 

80 K 
K~ = K , + - - + + I ~ U ~  

where K,,, is the measured diffusivity when U = 0 (and Jf and D are given by 
(5.2)). The closer the geometry of the bed approaches that of a random network, 
then presumablf the closer will be K,,, to $K. The calculating of K, presents great 
difficulties; however, it may be readily measured by means of an electrical 
analogue (see, for example, Wooding 1959). 

The expression (5.3) for K~ still contains two quantities, a and I, whose values 
have to be fixed in some way from the properties of the granular bed. For a, 
a reasonable v a l e  is a = (24k/a)*, where k and cr are the permeability and porosity, 
respectively, of the bed. The bed and the random network will then have the same 
permeability (see I, $2). In any case, the values of K~ are fairly insensitive to 
changes in a, provided all is not greater than about + (which is about the largest 
permissible value consistent with the assumptions about the flow through the 
capillaries). 
As regards I ,  probably the best value to take is the mean diameter of the grains, 

and it is not possible to be more precise than this. However, it may be an under- 
estimate, especially if there are cracks or fissures or channels running through the 
bed. The presence of these would be equivalent to incrming the value of 1, since 
they roughly correspond to longer capillaries. We can in fact work out the theory 
for a network of capillaries of varying lengths; this simply gives (5.1) averaged 
over the lengths of the capillaries, but since the distribution of capillary lengths is 
unknown, there is no real loss in supposing them to be all equal to some suitably 
chosen value which may be somewhat larger than the mean particle diameter if 
channels run through the bed or the packing is not too uniform. 

The longitudinal diffusivity as given by (5.3) may be evaluated numerically for 
given vduea of all and V l l K .  For U I / K  4 1, 

1 us12 
15 K 

K~ 4 K,+--, (5.4) 
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and for UZ/K a 1 (but not so large that (2.2) is violated), it can be shown that 

The expression (5.5) may be compared with the equivalent expression obtained 
in I (equations ( 4 . 4 ~ )  and (4.5)) by means of the random walk analysis, namely 

The leading terms agree, providing a useful check on the analysis. The difference 
in the other terms seems to arise from the fact that in I molecular diffusion WM 

taken into account only in an approximate manner. 
Hiby (1959) gives the following empirical formula for longitudinal dispersion in -~ 

0.65 U1 
14- 6 . 7 ( ~ / U z ) * '  

beds of glass spheres: 
K~ = 0 - 6 7 ~ +  (5.7) 

lo-' 
10-2 10- ' 1 10 1 02 

ut?/K 

FIGURE 1. Comparison of theory and experiment for the longitudinal dispersion. 
--- , Hiby (1959); - - - - -, BlmkweU et d. (1959); x , Gasberry & Bretton (1968); 
- , calculated values from (5.3) with all =$ and K,,, =+K. 

where 1 is the mean diameter of khe spheres. According to this expression, 
macroscopic mixing is completely negligible for UZ/K < 0.5. On the other. hand, 
Blackwell, Rayne & Terry (1959) suggest on the basis of experiments in beds of 
sand the empirical expression: 

1.17 Ul 
for - > 0.5, 

K K 

where 1 is the mean particle diameter. Also, they find that macroscopic mixing 
becomes significant at about Ul/K = 0.04. 
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These results are shown on figure 1, together with the theoretical curve 
taking all = 6 and K, = +K (all = is probably a better value for a bed 
of sand but the difference in the calculated values is slight). It will be seen 
that the theory predicts that macroscopic miXing is negligible for Ul/K < 0.5, 
and the calculated values are in remarkably good agreement with the expression 
of Hiby. Nevertheless, the discrepancy between the experimental observations 
is such that it is not possible to say dehitely whether or not the theory is 
valid when applied to granular beds. A possible explanation of the differences 
might be that the packing of the sand in some of the experiments was not 
uniform, in particular there may have been gaps or channels along the walls of 
the cylinders containing the medium. Hiby states that he was unable to obtain 
uniform packing right up to the walls of his apparatus, and he went to great 
trouble to eliminate the wall effect which could affect the results to a factor of two 
or more. As mentioned previously, non-uniform packing or the presence of 
channels along the walls would be equivalent to an increase in the value of 1, and 
would thereby reduce the discrepancy between the calculated values and the 
empirical curve of Blackwell et al.; but it is not yet possible to say whether this 
explanation is sufficient. 

6. The skewness of the longitudinal dispersion 
In  the previous section, it was tacitly assumed that the longitudinal distribu- 

tion of concentration was Gaussian, so that it is meaningful to regard p / 2 t  as an 
effective diffusivity. We shall now obtain an estimate of 3 in order to see how 
Gaussian the distribution actually is. This calculation is not without practical 
importance since observed concentration profiles are often skew. 

By arguments similar to those in 5 3, it  follows that 

s: c a -  
at 
-x3 = 3X2(t) u(t) = 3 u( t )  u(t') u(t") dt'dt" 

where 

is a triple Lagrangian correlation function. 
Now there are two types of contribution to Rs(71, T ~ ) .  First, there are the con- 

tributions from the cases in which the particle is in the same capillary after time 
T~ from the instant of release; and secondly, from the cases in which it is in 
a different capillary after time T ~ .  We shall assume that the second contribution 
has, negligible effect on the value of X3(t )  for large values oft (as is the case for B). 
Although this assumption is highly plausible, a rigorous proof seems to present 
great difficulties. 

To calculate the first contribution, we require the probability that a particle 
released at a given position is in the same capillary after time intervals 71 and 72, 

where T~ < T ~ ,  and the particle has not been to one of the ends of the capillary and 
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come back again (this is counted aa being in a different pore). This probability is 
just P(Eo,p,7J, aa given by (4.7). Hence, for 71 < 7 2 ,  

x (1 - ( - l)% cosh M) exp { - (n%r2 + M2) D7/Z2}, (6.3) 

since the contribution from the ‘Brownian velocity’ vanishes. Then 

and if UZ/K % 1, it can be shown that 
- U2tP 
x 3  + -- 

~ O K  . 

(6.5) 

(An estimate of 5 for large values of u l / K  is given in equation (3.20) of I. The 
expressions are the same, except for the numerical coefficient.) 

It is clear that Fincreams linearly with t and in this sense the distribution - -  
becomes more skew as the time increases. However, the skewness factor XS/(Xz)% 
tends to zero like ta, and since there is no reaaon to doubt that the higher 
moments tend to those of a Gaussian distribution as t-* +- 0 (a rigorous proof of 
this statement is difficult and will not be attempted here), we may say that the 
distribution is asymptotically Gaussian. 

A measure of the departure from normality is given by the value of the 
skewness factor. If UZ/K < O( l), the skewness factor is always small. The more 
interesting cam is when UZ/K > 1. The condition that the skewness factor be 
small compared with unity is then 

(6.7) 

(This condition is similar to that given in I, equation (4.4a), but it is a little less 
restrictive.) 

7. Lateral dispersion 
The dispersion in a fixed direction perpendicular to the mean velocity can be 

calculated in a similar manner aa that in the longitudinal direction. We take y- 
and z-axes perpendicular to the mean velocity, and denote by q5 the azimuthal 
angle between the y-axis and the projection of the capillary on the yz-plane. That 
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is, if q is the velocity of fluid in a capillary, the components of velocity parallel to 
the axes are q 00s 8, q sin 8 cos 4, q sin 8 sin 9. It follows from the assumption of 
statistical isotropy that all values of qi (0 < qi < 2n) are equally likely. 

The velocity of a particle in the y-direction is 

w ( t )  = 3 U cos 8 sin 8 cosqi + qD sin 8 cos qi, (7.1) 

and the lateral diffusivity is 

Kf = fom V ( 0 ) )  d T .  

We have, as in 8 4, 

2 = 9uGos8  COS+ c o ~ e t  Siner~~~qi'+qDp.; ,s in28 ~ 0 ~ 2 q i .  (7.3) 

The last term on the right-hand side of (7.3) makes a contribution to K~ of amount 

K 1 a2U2 = -+-- 
3 80 K .  (7.4) 

Now to calculate 

Sf(7) = 9U2 oos8 sin8 cos qi ~ 0 ~ 8 ~  sine' C O S ~ ~ ' ,  

it is necessary to make some assumption about the statistical correlation between 
the values of qi in successive capillaries occupied by a marked particle. In the 
present paper, we shall assume that these are statistically independent, and also 
that the value of qi is independent of 8. The contribution to from particles 
which have changed capillaries in time T is then identically zero, and hence 

1 1 2n 

4 7 )  = 9 u q  0 0 0  f j p2(1-p2) cos2qidP(~o,pu,T)d~odp~qi, (7.5) 

where P(Eo,p, T )  is given by (4.7): 
The assumption of the statistical independence of the values of 4 in different 

capillaries is somewhat dubious when UZ/K B 1 (as discussed in more detail in I). 
Roughly speaking, this is because the lateral memderings of the streamlines are 
restricted by continuity requirements. However, the smaller is UZ/K, the better 
will be the assumption, since the capillaries by which a marked particle leaves 
a junction are equally likely if molecular diffusion is dominant. 

flf(7) may be integrated with respect to T ,  giving 

Then K~ is the sum of (7.4) and (7.6). Altering the terms independent of U so that 
Kf = K,,, when U = 0 (for the same reasons as given in 4 5) ,  we have 

It will be noticed that Kf 9 K ~ ,  in accord with intuition and experience. 
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When Ul/K < 1, 

At  the other extreme when U Z / K  $ 1, then 
K t + ~ ~ ~ + - - + K m - - 3 + ~ ( $ ) .  1 a2U2 K 

40 K (7.9) 

The leading term of this expression agrees with that obtained by the random walk 
analysis. 

10" 
10-3 10-2 1 10 102 1 4  

u l / K  

F I a m  2. The lateral dispersion. -, Calculated values with K, = +K and all = and ; 

The theoretical values with K, = $K and all = 8 and & are shown on figure 2. 
Also shown are some measured values by Hiby (1959), in beds of spheres, for 
large values of UZ/K. The agreement is not good but a statistical correlation 
between successive values of $, consistent with a restricted lateral displacement 
of the streamlines, could reduce the calculated. values of K~ considerably. The 
neglect of this correlation probably accounts for the differences between theory 
and experiment, and it is hoped to investigate this in later work. 

_-- , observed values (Hiby 1959). 
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